Niord System Development Guide

Table of Contents

1. Introduction

2. Java Coding Conventions

3. Webapp Coding Conventions

4. Niord Development Set-Up

5. Niord-Proxy Development Set-Up
6. Niord Docker Containers

© 4 W e

12
13

Chapter 1. Introduction

* This version of the development guideline is for Niord 2.0 which is no longer under
development. Niord 3.0 is the current version, where Wildfly has been replaced by Quarkus.*

Niord (Nautical Information Directory) is a system for producing and publishing Navigational
Warnings (NW) and Notices to Mariners T&P (NM).

It was originally developed as part of the EfficienSea2 EU project and subsequently implemented as
a production system for the Danish Maritime Authority.

This guide should be read by developers of Niord. It will use the Danish Niord system as a use case.
The guide will cover topics, such as coding conventions, how to set up a development environment,
etc.

1.1. Developer Profile

For the development process to be effective, the developer sshould preferably have a thorough
knowledge of the following technologies:
* Java 8

» Java EE 7: Niord uses the entire Java EE 7 stack, specially EJB, JPA, JAX-RS, Servlets, Batch API,
CDI, etc.

* Angular]S + Bootstrap
* MySQL

* Docker
It would also be advantageous, if the developer has some knowledge of the following technologies:

* OpenLayers

wildfly 10

JBOSS Keycloak
e Freemarker

¢ Maven

Git(hub)

Furthermore, the actual Niord source code also has a certain learning curve.

http://efficiensea2.org
http://www.dma.dk/

1.2. Resources

The main GitHub repository for Niord is found at https://github.com/niordorg. For the developer,
the main projects of the repository are.

Projects Description

niord Main project for the Niord production system.

niord-dk Extensions for the Danish Niord production system.

niord-proxy Simple end-user facing website that displays the active messages from the

Niord production system.
niord-gh Extensions for the Ghanaian Niord production system (NB: separate repo).

niord-appsrv Resources for installing and configuring the middleware used by the Niord
production system, i.e. MySQL, Wildfly and Keycloak.

niord-docker Scripts and configuration files for creating and pushing all Docker-containers
needed for running a Niord production system.

https://github.com/niordorg
https://github.com/NiordOrg/niord
https://github.com/NiordOrg/niord-dk
https://github.com/NiordOrg/niord-proxy
https://github.com/GhanaNauticalnfo/niord-gh
https://github.com/NiordOrg/niord-appsrv
https://github.com/NiordOrg/niord-docker

Chapter 2. Java Coding Conventions

Niord is fairly consistent about using naming and coding conventions, and understanding these
conventions makes it easier to read the code.

Each logical entity of Niord, such as an area, a chart, a message or a publication, is implemented
using JPA entities, JSON-serializable value objects, business logic, REST interfaces, and batch import
classes.

2.1. Area Example

As an example, consider the Area entity, which represents a specific area in the Areas tree. The
classes used to implement areas, can be seen below:

¥ 38 niord-core
¥ [org.niord.core.area
1 Area.java
® AreaDesc.java
® AreaService.java
¥ [batch
“*| BatchArealmportProcessor.java
| BatchArealmportReader.java
| BatchArealmportWriter.java
v B vo
® gystemAreaVo.java
¥ [niord-maodel
¥ [W org.niord.model.message
@ AreaDescVo.java
1 Areavio.java
¥ 38 niord-web
¥ [W org.niord.web
¥ AreaRestService.java

The classes are spread across three niord sub-projects:

Projects Description
niord-model Contains the Niord Message Model. The message model is made up of value
objects.

Third-party application can define a dependency on this project if they
integrate with Niord via the Public REST API.

niord-core Contains the actual entity classes and business logic (session beans).
May also define system model value objects, in as much as these may extend
the niord-model classes.

niord-web Contains the JAX-RS REST interface used by clients (such as the Niord web
application) to access the entities and execute business logic.

https://github.com/NiordOrg/niord/tree/master/niord-model
../model/model.html
../public-api/api.html
https://github.com/NiordOrg/niord/tree/master/niord-core
https://github.com/NiordOrg/niord/tree/master/niord-web

2.1.1. Classes and Naming Conventions

Classes Description

AreaVo The Niord Message Model representation of an area.
The Vo suffix is used for all value objects, which are essentially JSON-
serializable versions of the real entities.

AreaDescVo Contains a language code and all localizable attributes of AreaVo.
These associated entities have a Desc suffix, as in AreaDescVo.

Area The JPA entity definition of an area.
Whereas there will be a strong correlation between the attributes of
the Area entity and the AreaVo value object, the entity class may
define additional attributes, which are not part of the public niord-
model class. The entity class thus constitutes a system model.

AreaDesc The JPA entity definition of the area description entity, i.e. the
localizable attributes of an area.

SystemAreaVo When a system model entity, such as Area, contains attributes not
included in the value objects of the Niord Message Model, then a
value object with a System prefix is introduced to capture the
additional attributes.

As such, SystemAreaVo will extend AreaVo and includes the additional
attributes.

AreaService Each entity will have a companion stateless session bean or
singleton EJB, with a Service suffix. This class defines the business
logic and life-cycle management functions of the entity.

BatchAreaImportReader Many of the Niord model entities have an associated batch job for
BatchAreaImportProcessor importing the entities.
BatchArealmportWriter The batch job is typically implemented using the Java EE batch API,

and the three phases will be implemented by classes that have a
Batch prefix and the Reader, Processor and Writer suffixes
respectively.

AreaRestService Each Niord entity will also be associated with a JAX-RS REST
interface.
This interface is typically a thin wrapper on top of the service
interface, and will have the RestService suffix.
The REST interface also performs all the security and permission
checks used to protect the Niord system.

2.2. Localization

Almost all entities in Niord are localizable to any number of languages.
As can be seen from the Niord Message Model, this is implemented by associating an entity with a
list of classes that contain a language code and all localizable attributes.

Area contains one localizable attributes; name:

../model/model.html
../model/model.html
../model/model.html

public class AreaVo implements ILocalizable<AreaDescVo>, IJsonSerializable {
List<AreaDescVo> descs;

}

public class AreaDescVo implements ILocalizedDesc, IJsonSerializable {
String lang;
String name;

2.3. Serialization and De-serialization

All Niord entities have methods for converting to and fro their value object representation.

In the simplest form, the JPA entity model will define a constructor that takes the value object
representation as a parameter, and it will have a toVo() function that returns the value object
representation of the entity. Example:

public class Domain extends BaseEntity<Integer> {
public Domain() {}
public Domain(DomainVo domain) {
// Instantiate entity from value object

}
public DomainVo toVo() {
// instantiate and return a value object from entity

}

Sometimes, however, things are a little more complex, as is the case for Area.

Area has two value object representations, AreaVo and SystemAreaVo. When, say, a public REST API
call returns a message with an associated area, then the AreaVo should be returned. If, however, a
system administrator edits an area via the Niord webapp, then the SystemAreaVo representation
should be used.

So, Area.toVo() actually takes the target value object class as a parameter, and leave it to the REST
service to decide which representation to use.

Another complexity in serializing an entity to its value object, is that often you wish to exact control
over which fields to return.

One example is language control. Most of the REST API calls will only return the localizable entities
(e.g. AreaDescVo) for the requested language. This preserves bandwidth and makes client code
simpler.

Another good example is control over the hierarchical relationship of Areas. When a message with
an associated area (say, "Kattegat") is returned from a REST call, then you want the parent
relationship of areas to be included ("Kattegat" should include a parent-reference to "Denmark).
Alternatively, when editing the area tree on the Areas admin page, then you want the REST call to
return root areas with their children relationship.

To facilitate this type of serialization control, Niord use a DataFilter helper class, which defines the
fields and language to include. To control the serialization of an entire tree of related entities, the
fields can be prefixed with the entity name, as seen in the example below:

DataFilter filter = DataFilter.get()
.fields("Message.details", "Message.geometry", "Area.parent", "Category.parent")
.lang("en");

Hence, the resulting serialization code for Area will thus be:

@Entity
public class Area extends TreeBaseEntity<Area> implements ILocalizable<AreaDesc> {
public Area() {}
public Area(AreaVo area, DataFilter filter) {
// Instantiate entity from value object

}
public <A extends AreaVo> A toVo(Class<A> clz, DataFilter filter) {
// instantiate and return a value object from entity

}

Chapter 3. Webapp Coding Conventions

The other big chunk of code in Niord is the Angular]S and JavaScript-based web application.

3.1. Organization of Angular Sources

The web application is organized as follows:

& api.html
¥ M app
» B admin

|7 atons

70 auth

9 commaon

|7 editor

1 home

9 layout

2 map

|| messages

* niord-app.js

7| promulgation

¥ | | schedule
® schedule-ctrl.js
® schedule-directives.js
o schedule-filter.ntml
| schedule-service.js
@ schedule.htmil
o time-schedule-editor.html

k[sysadmin

b | template

B conf

|l css

B ext

B img

@ index-dist.html

e index.html

> 8 WEB-INF

L A L L A I .

L

b R .

All source files developed as part of Niord, is placed in the app folder. All external dependencies,
such as third-party Angular]S directives, are placed in the ext folder.

Under app, the angular sources, such as directives, controllers, services and partials (html), are
primarily organized by main page. So, all sources for the Messages page are in the messages folder,
etc.

3.2. Application Cache

The Niord web application use various HTML 5 features, such as Local Storage and Application
Cache. The Application Cache in particular, makes day-to-day use of Niord substantially faster for
end users.

Application Cache has supposedly been deprecated, and is to be replaced with a
A Service Workers mechanism. However, Service Workers are not yet supported by
Safari (read: iOS).

The niord-web project can be built using the "dist" profile:

cd niord-web
mvn -P dist clean install

This will perform the following modifications to the resulting war file:

 All Niord CSS and JavaScript files will be merged into single files.

* An HTMLS5 Application Cache manifest file is generated to facilitate caching.

3.3. Overlay Wars
Another mightily important feature used by Niord, is the web-application overlay mechanism.

In reality, the Niord project would not be used in production by itself. Rather, developers would
create a country-specific version (such as niord-dk for Denmark, or niord-gh for Ghana) with all the
customizations and legacy integration needed for that particular country.

The main trick is to create a web application that functions as an overlay of the Niord web
application. This allows the developer to selectively replace individual files, such as Angular]s files,
CSS files, resource bundles, etc.

The pom.xml file of the new web application, should define the overlay as:

<plugin>
<groupld>org.apache.maven.plugins</groupId>
<artifactId>maven-war-plugin</artifactId>
<version>2.4</version>
<configuration>
<workDirectory>target/overlay</workDirectory>
<overlays>
<overlay>
<groupId>org.niord</groupId>
<artifactId>niord-web</artifactId>
</overlay>
</overlays>
</confiquration>
</plugin>

Chapter 4. Niord Development Set-Up

As described in the [Overlay Wars] section, a concrete implementation of the Niord system will
almost always involve a country-specific customized project, such as the niord-dk project for
Denmark, or the niord-gh project for Ghana.

The development setup described in this section will be based on niord-dk.

The niord-appsrv project contains scripts for setting up Wildfly, Keycloak, etc. However, the easiest
way to get started developing on the Niord project is to use Docker for the databases and Keycloak.
This is the set-up described below.

4.1. Prerequisites

* Java 8+
* Maven
* Docker
* Docker Compose
The set-up described in this section assumes that you are using Linux / MacOS X. If you are using

Windows, you will probably need to adjust the various commands and scripts accordingly. Consider
using Git Bash for the easiest migration.

4.2. Check out Niord Projects

As mentioned, the development set-up used in this document is based on the Danish Niord project.

Either use your favorite IDE (assume Intelli]) to check out the niord and niord-dk projects, or check
them out from the command line:

git clone https://github.com/NiordOrg/niord.qgit

cd niord

mvn clean install

cd ..

git clone https://github.com/NiordOrg/niord-dk.git
cd niord-dk

mvn clean install

The rest of the section will assume that you are working in the niord-dk directory.

Import the niord-dk project in Intelli] via its pom.xml. Under the "Maven Projects" also import the
parent niord project. This will allow you to work and debug both code-bases from within Intelli].

The first time around, Intellij may have created a new unversioned directory, niord-dk-
web/overlays. Just delete it and build again.

https://github.com/NiordOrg/niord-dk
https://github.com/GhanaNauticalnfo/niord-gh
https://github.com/NiordOrg/niord-appsrv
https://github.com/NiordOrg/niord
https://github.com/NiordOrg/niord-dk

4.3. Starting MySQL and Keycloak

Make sure your working directory is niord-dk.

You may want to start by creating a .env file in your working directory, which overrides the
environment variables (such as database passwords) used in the docker compose file.

The following commands will start two MySQL databases, one for the application server and one
for Keycloak, and also run Keycloak itself.

mkdir $HOME/.niord-dk
docker-compose -f dev/docker-dev-compose.yml pull
docker-compose -f dev/docker-dev-compose.yml up -d

The initial mkdir command is just to avoid permission problems since docker would otherwise
create it as owned by root.

Once this is up and running, create a Keycloak admin user (default niordadmin/keycloak) which
can be used to create user groups and assign domain roles to the groups:

./dev/keycloak-admin-user.sh

Enter http://localhost:8090/auth/ and check that you can log in using the Keycloak admin user.

4.4. Configuring Wildfly

Next, create and configure a Wildfly installation using:
./dev/install-wildfly.sh

Configure the Wildfly server in IntelliJ:
* Firstly, you may want to right-click the wildfly-10.1.0-Final folder and mark the folder as
excluded.

* In Run - Edit configuration...,, configure a new local JBoss server based on the Wilfly
installation produced above.

* Deploy "niord-dk-web:war exploded" to the server.

 If you have only updated web resources, there is no need to re-deploy the web application. Use
the "Update resources" function instead.

» To get rid of superfluous Intelli] code editor warnings, disable the "Declaration access can be
weaker" and "Dangling Javadoc comment" inspections.

The Keycloak docker image creates an initial domain, "Master", and a Niord user,
sysadmin/sysadmin, that should be used for the initial configuration of the system, whereupon they

10

http://localhost:8090/auth/

should be deleted.

Enter http://localhost:8080 and check that you can log in using the Niord sysadmin user.

4.5. Finishing touches

Import the Danish test base data into Niord:
./dev/install-base-data.sh

Within a minute or so, this will import domains, areas, categories, etc. needed to run the Niord-DK
project. First clean up a bit:

* In Niord, under Sysadmin — Domains, click the "Create in Keycloak" button for each of the
imported domains. This will create the two domains in Keycloak.

* In Keycloak, edit the "Sysadmin" user group. Under "Role Mappings", select the clients created
for the imported domains one by one, and assign the "sysadmin" client roles to the group.

* While in Keycloak, you may also want to define new user groups for editors and admins, and
assign the appropriate client roles for the imported domains to the groups.
Additionally, for admin-related groups (who should be able to manage users in Niord), assign
the "manage-clients" and "manage-users" client roles of the "realm-management"” client to the
groups.

* Delete the "Master" domain in Niord and the corresponding "niord-client-master” client in
Keycloak.

* Go through the configuration and settings of the Niord Sysadmin pages and adjust as
appropriate.

11

http://localhost:8080

Chapter 5. Niord-Proxy Development Set-Up

The Niord-Proxy is a simple client-facing website that retrieves and renders messages from a Niord
back-end server.

5.1. Prerequisites

e Java 8+

¢ Maven 3.x

When setting up the development environment for the Niord-Proxy, you need to point it to an
existing Niord service, from where it will fetch data, i.e. the active messages and publications.

The set-up in this document will assume that you are running a development version of the Niord
service, as described in the [Niord Development Set-Up] section.

5.2. Check out Niord-Proxy Project

Either use your favorite IDE (assume Intelli]) to check out the niord-proxy project, or check it out
from the command line:

git clone https://github.com/NiordOrg/niord-proxy.qgit
cd niord-proxy

Import the niord-proxy project in IntelliJ via its pom.xml.

5.3. Starting Niord-Proxy

The Niord Proxy can be run as an executable jar:

mvn clean install

java -Dswarm.http.port=9000 \
-Dniord-proxy.executionMode=DEVELOPMENT \
-Dniord-proxy.server=http://localhost:8080 \
-Dniord-proxy.repoType=SHARED \
-Dniord-proxy.repoRootPath=/Users/carolus/.niord-dk/repo \
-Dniord-proxy.timeZone=Europe/Copenhagen \
-Dniord-proxy.areas="urn:mrn:iho:country:dk|56|11|6,urn:mrn:iho:country:gl|70|

-40|4,urn:mrn:iho:country:fo|62]-7|8" \
-Dniord-proxy.analyticsTrackingIld= \
-jar target/niord-proxy-swarm.jar

An easier alternative is to run the org.niord.proxy.NiordProxyMain main class directly from your IDE
(e.g. Intelli]). Use the same VM Options as for the executable jar above.

12

https://github.com/NiordOrg/niord-proxy

Chapter 6. Niord Docker Containers

The previous sections described how to set up and configure a Niord development environment,
which relied Docker containers for running MySQL and Keycloak.

Docker containers is indeed a very flexible and convenient way of running Niord, even in test and
production.

This section will outline how to create and push docker containers for Niord. If you do not rely on
standard containers, please create your own Docker Hub at https://hub.docker.com, and update the
scripts and procedures accordingly.

In particular, you will need to create a Docker Hub repo for your own customized niord-appsrv.

The niord-docker repository contains a collection of bash scripts for creating and pushing docker
containers, which may be used for inspiration.

6.1. Prerequisites

In order to build the projects and create docker containers, the following should be installed:

* Java 8+
* Maven
* Docker
* Docker Compose
The set-up described in this section assumes that you are using Linux / MacOS X. If you are using

Windows, you will probably need to adjust the various commands and scripts accordingly. Consider
using Git Bash for the easiest migration.

6.2. Checking out Projects

Assume that you have checked out the following projects, which is the Danish flavoured Niord
system:

git clone https://github.com/NiordOrg/niord.qgit

git clone https://github.com/NiordOrg/niord-dk.qgit

git clone https://github.com/NiordOrg/niord-proxy.git
git clone https://github.com/NiordOrg/niord-docker.qgit

6.3. Building Projects
A standard update script could execute the following updates:

Build niord project
cd niord
git pull

13

https://hub.docker.com
https://github.com/NiordOrg/niord-docker

mvn clean install

Build niord-dk project.

NB: use the "dist" profile as this will merge JavaScripts and CSS files
into single files and enable support for HTML 5 App Cache.

cd ../niord-dk

git pull

mvn -P dist clean install

Build niord-proxy project
cd ../niord-proxy

git pull

mvn clean install

Update niord-docker
cd ../niord-docker
git pull

6.4. Creating Docker Containers

The example below demonstrates how to build some of the relevant docker containers. Create your
own versions of the scripts which points to your own Docker Hub organization rather than dmadk.

log in to dockerhub in order to push the images
docker login

Build niord-appsrv docker image

cd niord-docker/02-niord-appsrv/

./build-niord-appsrv.sh build ../../niord-dk/niord-dk-web/target/niord-dk-web.war
./build-niord-appsrv.sh push

Build niord-keycloak docker image
cd ../03-niord-keycloak/
./build-niord-keycloak.sh build
./build-niord-keycloak.sh push

Build niord-proxy docker image
cd ../06-niord-proxy/

./build-niord-proxy.sh build ../../niord-proxy/target/niord-proxy-swarm.jar
./build-niord-proxy.sh push

6.5. Running a Complete Niord System
The following example will illustrate how to run a complete Niord system using Docker containers.

The example is based on the GhanaNautical.info project, which is a Ghana-flavoured version of
Niord, since this is a very self-contained set-up where everything is created within a single Amazon
WS account, ranging from an EC2 linux instance, the purchase of DNS names, generation of SSL

14

certificates, configuration of mail accounts, SMTP, etc.

Setting up and configuring Amazon WS is beyond the scope of this manual, which will merely focus
on how to run Niord as Docker-containers withing the Amazon WS infrastructure depicted below.

Certificate Manager

EC2 Instance * ghananautical.info

niord-ghana
External IP: 52.31.51.11

ghananautical.info ﬁ

Docker

Elastic Load Balancer

niord-appsrv

8080

niord-keycloak

8090

niord-proxy

JUL

9080

niord-smtp

https://niord.ghananautical.info

https://niord-keycloak.ghananautical.info

https://ghananautical.info

niord-backup

Simple Email Service

niord-mysq|

Domain

ghananautical.info

niordkc-mysq|l

Route 53

DNS

Niord webapps
Mail domain
DNS service

Idata/niord-gh

File repo
DB files

DB backup

WorkMail

Users

admin@ghananautical.info
niord@ghananautical.info

In this set-up the $NIORD_HOME directory is situated at /data/niord-gh. An initial bootstrapping

settings file should be created at /data/niord-gh/niord.json:

"Key"
"description”
"value"

"web"
"editable"

"Key"
"description”
"value"

"web"
"editable"

"niord.home",

"The root directory for the Niord application”,
"/data/niord-gh",

false,

true

"baselri”,

"The base application server URI",
"https://niord.ghananautical.info",
false,

true

15

"key" : "authServerUrl",
"description” : "The Keycloak URL",

"value" : "https://niord-keycloak.ghananautical.info/auth",
"web" . false,
"editable" : true
I
{
"key" : "authServerSs1Required",
"description” : "Either 'external', 'none' or 'all'",
"value" : "none",
"web" . false,
"editable" : true
H
{
"key" : "mailSender",
"description” : "The sender e-mail address",
"value" : "niordeghananautical.info",
"web" : false,
"editable" : true
Jis
{

"key" : "mailValidRecipients",

"description” : "Comma-separated list of valid mail recipients, or 'ALL' for all
recipients, or 'LOG' for simulation",

"value" : "ALL",

"web" : false,

"editable" : true

Next, create a .env file in the working directory of the linux user. This should contain passwords
and settings for docker-compose:

NIORD_HOME=/data/niord-gh
MYSQL_ROOT_PASSWORD=TBD
KCDB_PASSWORD=TBD
NIORDDB_PASSWORD=TBD
AMAZON_SES_USER=TBD
AMAZON_SES_PASSWORD=TBD
PROXY_TRACKING_ID=TBD

Start the Niord system from the docker-compose file found in the niord-gh Github repository:

git clone https://github.com/GhanaNauticalnfo/niord-gh.qgit
docker-compose -f niord-gh/docker/docker-test-compose.yml pull
docker-compose -f niord-gh/docker/docker-test-compose.yml up -d

The first time the Niord system is started, add a Keycloak admin user, which can be used to create

16

https://github.com/GhanaNauticalnfo/niord-gh

user groups and assign domain roles to the groups:

cd ~/niord-gh
./keycloak-admin-user.sh

Also, deploy the initial base data (charts, areas, domains, etc.) for the new installation:

zip -j /tmp/niord-basedata.zip ~/niord-gh/niord-gh-basedata/*.json
sudo mkdir -p /data/niord-gh/batch-jobs/batch-sets/
sudo mv /tmp/niord-basedata.zip /data/niord-gh/batch-jobs/batch-sets/

Within a minute or so, this will import domains, areas, categories, etc., needed to run the Niord
Ghana project. First clean up a bit:

* In Niord, under Sysadmin — Domains, click the "Create in Keycloak" button for the "NW" and
"NM" domains. This will create the two domains in Keycloak.

* In Keycloak, edit the "Sysadmin" user group. Under "Role Mappings", select first "niord-nw" then
"niord-nm" and assign the "sysadmin" client roles to the group.

* While in Keycloak, you may also want to define new user groups for editors and admins, and
assign the appropriate client roles for "niord-nw" and "niord-nm" to the groups. Additionally,
for admin-related groups (who should be able to manage users in Niord), assign the "manage-
clients" and "manage-users" client roles of the "realm-management" client to the groups.

* Delete the "Master" domain in Niord and the corresponding "niord-client-master” client in
Keycloak.

* Go through the configuration and settings of the Niord Sysadmin pages and adjust as
appropriate.

Lastly, update the root crontab, using "sudo crontab -e", to call the niord-backup docker script
periodically:

45 * * * * /ysr/bin/docker exec niord-backup /hourly-backup.sh >> /data/niord-
gh/backup/backup.log 2>&1
20 @7 * * * /usr/bin/docker exec niord-backup /daily-backup.sh >> /data/niord-
gh/backup/backup.log 2>&1

17

	Niord System Development Guide
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Java Coding Conventions
	Chapter 3. Webapp Coding Conventions
	Chapter 4. Niord Development Set-Up
	Chapter 5. Niord-Proxy Development Set-Up
	Chapter 6. Niord Docker Containers

